LOS HOMINOIDEOS DEL MIOCENO Y EL PROBLEMA DEL ORIGEN DEL ORANGUTÁN

Francesc RIBOT*, Mario GARCÍA BARTUAL* y Josep GIBERT*

1 Departamento de Antropología, UNED; c/ Pomaret 23, 08017 Barcelona.
2 Instituto de Paleontología “Dr. Miquel Crusafont”; c/ Escola Industrial 23, 08201 Sabadell.

ABSTRACT

Through the morphological changes observed in the cranial and facial remains of the Miocene hominoids, the evolutive lineage, from the primitive catarrhines from the Oligocene of the Fayum (Egypt) to the living hominoids, can be established. A lot of the distinctive traits of the actual orang-utan (Pongo) are already present in the African Lower and Middle Miocene kenapithecines, from which appeared, on the one hand the Sivapithecus-Pongo clade (primitive) and, on the other the Dryopithecus-Graecopithecus-African hominids (derived). The separation between these two clades began in Eurasia during the Middle Miocene (12.5 my) due to geographical and climatic changes.

Keywords: Miocene, catarrhines, hominoids, hominids, Sivapithecus, Dryopithecus, Pongo, Gorilla, dispersal.

RESUMEN

A través de los cambios morfológicos observables en los restos craneofaciales y dentales de los hominoides del Mioceno podemos establecer la línea evolutiva que conduce desde los primitivos catarrhines del Oligoceno de El Fayum (Egipto) hasta los hominoides actuales. Muchas de las características distintivas del actual orangután (Pongo) ya se empiezan a perfilar en los kenapitécinos del Mioceno inferior y medio africano, a partir de los cuales se originarán los clados Sivapithecus-Pongo (primitivo), por un lado, y Dryopithecus-Graecopithecus-hominídos africanos (derivado), por otro. La separación entre los dos clados se produjo en Eurasia durante el Mioceno medio (12.5 ma) debido a cuestiones geográficas y climáticas.

Palabras clave: Mioceno, catarrhines, hominoides, homínidos, Sivapithecus, Dryopithecus, Pongo, Gorilla, dispersión.

INTRODUCCIÓN

En las últimas décadas, la biología molecular y la paleontología humana han clarificado cuál es la relación existente entre los hominoides actuales [gibón (Hylobates), orangután (Pongo), gorila (Gorilla), chimpancé (Pan) y hombre (Homo)]. Clásicamente se pensaba que los tres grandes antropoides formaban un clado independiente con respecto al hombre, y que ambas líneas se habían separado de un antepasado común hacia unos 20 ma. A este pensamiento contribuyeron tres hechos: 1) la clasificación propuesta por Simpson (1945), en la que agrupaba orangután, gorila y chimpancé en la familia Pongidae y dejaba al hombre como único representante de la familia Hominidae; 2) la situación filogenética de Ramapithecus (hominideo fósil del Mioceno indo-paquistaní), que a raíz de los estudios de Simons y Pilbeam sobre las similitudes dentales de este taxón con Australopithecus (Simons, 1964, 1968, 1977, 1979, 1980; Simons y Pilbeam, 1965; Pilbeam y Simons, 1965; Pilbeam, 1966; Pilbeam et al., 1977; Kay y Simons, 1983) fue considerado por la mayoría de paleoantropólogos como miembro del linaje humano. Se pensaba que Ramapithecus era sinónimo de Kenyapithecus del Mioceno de África oriental y, por tanto, su edad podría remontarse a los 15 ma, y 3) la
Figura 1. Modelos de clasificación y evolución de los hominoideos. A.- Modelo clásico, cuando se consideraba "Ramapithecus" (ahora igual a Sivapithecus) como perteneciente al linaje humano y basado en ciertos datos anatómicos restringidos; B.- Modelo actual después de considerar Sivapithecus como miembro del clado pongino, tener en cuenta los datos moleculares y aplicar una anatomía comparada más afinada, ma: millones de años.
Two models for the classification and evolution of the hominoids. A.- Classical model, when "Ramapithecus" (now the same as Sivapithecus) was considered as belonging to the human lineage and based in certain restricted anatomical data; B.- Current model, after considering Sivapithecus as a member of the Ponginae clade, to bear in mind the molecular data and to apply a comparative anatomy more improved.

creencia de que el antepasado común de los póngidos era Proconsul (aprox., 20 ma) del Mioceno inferior africano (Fig. 1a).

Los estudios sobre proteínas realizados por Goodman (1962, 1963) demostraron que el gorila y el chimpancé están más relacionados con el hombre que con el orangután. Sarich y Wilson (1967) con la aplicación del llamado "reloj molecular" rebajaron sustancialmente las edades de las bifurcaciones de los hominoideos. Estos trabajos hicieron que la clasificación clásica empezara a
tambalearse y se planteara una que reflejase realmente las relaciones evolutivas entre estos primates. Actualmente, se acepta mayoritariamente que los cinco taxones forman la superfamilia hominoidea, el gibbon pertenece a la familia Hylobatidae, mientras que el resto configuran la familia Hominidae: gorila, chimpancé y hombre forman un grupo monofilético (subfamilia Homininae), mientras que el orangután restaría en un clado aparte (subfamilia Ponginae). La biología molecular nos da unas edades más ajustadas para las distintas bifurcaciones, así los hylobátidos emergieron hace entre 20 y 16 ma, la rama del orangután se separó del tronco común hace unos 12-14 ma, el gorila alrededor de los 7-10 ma y, finalmente, la separación entre el chimpancé y el hombre se hizo entre los 5-6 ma (Fig. 1b). En este escenario, la situación de Ramapithecus/Kenyapithecus, con 15 ma, como antepasado del hombre se hacía insostenible. Estas secuenciaciones y sus respectivas cronologías tuvieron, en principio, el rechazo masivo de la comunidad paleoantropológica que, por un lado, no aceptaba que otras disciplinas se inmiscuyeran en lo que pensaban eran “asuntos propios” y, por otro, no se resignaba a excluir a Ramapithecus como antepasado del hombre, pues la anatomía comparada tenía que primar sobre cualquier otra consideración.

FORMACIÓN DE LOS MORFOTIPOS PRIMITIVOS

Una revisión de los caracteres observados en Pongo y cómo han evolucionado en los taxones fósiles nos permite establecer un modelo evolutivo desde las formas primitivas hasta el orangután. En primer lugar, tendremos que establecer cuál es la morfología craneofacial y dental de los primeros catarrinos y observar cómo ha cambiado en Pongo, así iremos reconstruyendo los distintos morfotipos primitivos. Para dicha reconstrucción existen dos modelos, uno se basa en los datos paleontológicos (Leakey et al., 1991; Benefit y McCrossin, 1993, 1997; Ribot et al., enviado), mientras que el otro utiliza la neontología, fundamentada en la morfología de los actuales colobinos (cercopitécidos) e hylobátidos (hominoides) (Delsom y Andrews, 1975; Harrison, 1987). En este trabajo nos decantamos por el primer modelo, ya que a raíz de los descubrimientos de nuevos fósiles, más o menos completos, se observa una congruencia que nos permite seguir en el tiempo el rastro de un carácter concreto o de una serie de ellos, desde los catarrinos del Oligoceno hasta los hominoides actuales.

Los rasgos craneofaciales y dentales de los catarrinos oligocénicos (aprox. 32 ma) se encuentran bien representados por un cráneo completo (CGM 40237) y tres caras ópticamente conservadas (DPC 2803, DPC 3161 y CGM 42842) de Aegyptopithecus. Hemos seleccionado 37 rasgos observables en este taxón y los hemos comparado con el orangután (Tabla 1). Viendo las semejanzas y las diferencias entre ambos taxones podemos inferir las características que se mantienen primitivas y las que son derivadas en Pongo. Para saber cómo han evolucionado tendremos que reconstruir los siguientes morfotipos ancestrales: 1) último antepasado común a los cercopitecoideos y hominoideos; 2) hominoideo; 3) homínido, y 4) pongino.

1) **Último antepasado común de los cercopitecoideos y hominoideos**

Desafortunadamente no se han encontrado todavía los restos de este catarrino, aunque en teoría su morfología debió ser muy similar a la de Aegyptopithecus. Sin embargo, podemos recrearlo de acuerdo con las características derivadas compartidas por los cercopitecoideos primitivos [Victoriapithecus (KNM-MB 29100)] y los hominoideos más primitivos [Proconsul (KNM-RU 7290)] con respecto a Aegyptopithecus (los números entre paréntesis hacen referencia al número del carácter correspondiente en la Tabla 1): (16) varios forámenes zigomaticofaciales situados por encima del borde inferior orbital, (25) presencia de hueso ectoptímpano [observable también en Proconsul sp. (R 114-1951)]; (27) procesos condilar y coronoides mandibulares subiguales; (32) 1º más grandes que F, y (33) 1º situados más hacia delante que 1º. Así, este hipotético antepasado se encontraría derivado respecto a los primitivos catarrinos por estos 5 rasgos craneofaciales y dentales. Aparte de estos cinco rasgos, el morfotipo ancestral cercopitecoide se encontraría derivado también por los siguientes caracteres observados en Victoriapithecus: (4) moderado grado de clinorriquia; (12) septo interorbitario; (17) ausencia de sinus maxilar; (29) torus sinifisuro transverso inferior más grande que el superior, y (31) caninos superiores con el surco mesial que se prolonga por la raíz. Lo que nos indicaría que los cercopitecoideos primitivos estarían derivados por estos diez rasgos con respecto a los catarrinos primitivos.

2) **Morfotipo ancestral hominoideo**

Si el último antepasado común de los cercopitecoideos y hominoideos está derivado en cinco características con respecto al morfotipo ancestral
catarrino, los hominoideos primitivos lo están en cinco más: (17) sinus maxilar más extensivo; (24) paladar ancho anteriormente con líneas dentales subparalelas; (30) espesor del esmalte dental variable —delgado en Proconsul africanus y Proconsul major (= Ugandapithecus major, según Senut et al., 2000) y grueso en P. heseloni y P. nyanzae—; (35) reducción de la heteromorfa de P' y P", y (36) reducción de la sectorialidad en P". Con estas cinco nuevas características, el morfotipo ancestral hominideo estaría derivado por diez apomorfías con respecto al morfotipo ancestral catarrino.

Un problema añadido es la morfología del frontal y zona supraorbital de Proconsul que, a diferencia de Aegytopithecus, carece de arcos supraorbitarios, costa supraorbitaria y trigono frontal. Sin embargo, un frontal perteneciente a un individuo infantil (KNM-ME 2) nos acerca a la solución: su morfología es muy similar a la del frontal de Proconsul adulto (KNM-RU 7290) y, curiosamente, se asemeja mucho a la de los orangutanes

<table>
<thead>
<tr>
<th>Morfotipo craneofacial y dental primitivo para los catarinos (Aegytopithecus)</th>
<th>Morfología craneofacial y dental de Pongo pygmaeus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Neurocráneo bajo y alargado</td>
<td>1. Neurocráneo alto y corto</td>
</tr>
<tr>
<td>2. Hicco relativa o largo y prognáctico</td>
<td>2. Igual</td>
</tr>
<tr>
<td>3. Perfil facial algo convexo</td>
<td>3. Perfil facial cóncavo (simognático)</td>
</tr>
<tr>
<td>4. Moderada aironriquia'</td>
<td>4. Aironriquia extrema</td>
</tr>
<tr>
<td>5. Frontal relativamente corto en la fosa temporal</td>
<td>5. Igual</td>
</tr>
<tr>
<td>6. Costa supraorbital"</td>
<td>6. Igual</td>
</tr>
<tr>
<td>7. Arcos superciliares que se continúan dentro del septo interorbital</td>
<td>7. Igual</td>
</tr>
<tr>
<td>8. Región glaberal plana</td>
<td>8. Igual</td>
</tr>
<tr>
<td>10. Trigono frontal plano</td>
<td>10. Trigono frontal convexo</td>
</tr>
<tr>
<td>11. Escama frontal horizontalizada</td>
<td>11. Escama frontal verticalizada</td>
</tr>
<tr>
<td>13. Orbitas más altas que anchas</td>
<td>13. Igual</td>
</tr>
<tr>
<td>14. Región malar alta y región zigomática baja</td>
<td>14. Región zigomática algo más alta</td>
</tr>
<tr>
<td>15. Zigomático orientado lateralmente con pequeña curvatura</td>
<td>15. Zigomático plano y robusto</td>
</tr>
<tr>
<td>16. Único foramen zigomatico facial situado ligeramente por encima del borde inferior orbital</td>
<td>16. Varios forámenes zigomatico faciales situados por encima del borde orbital inferior</td>
</tr>
<tr>
<td>17. Sinus maxilar relativamente extensivo</td>
<td>17. El sinus maxilar se extiende hasta el frontal</td>
</tr>
<tr>
<td>18. Raíces de los caninos no rotadas en los alveolos</td>
<td>18. Caninos rotados en los alveolos</td>
</tr>
<tr>
<td>19. Fosa canina somera y grande</td>
<td>19. Fosa canina profunda y pequeña</td>
</tr>
<tr>
<td>20. Márgenes laterales de la abertura nasal formados por el jugo canino</td>
<td>20. Igual</td>
</tr>
<tr>
<td>22. Abertura nasal oval y estrecha</td>
<td>22. Abertura nasal en forma de pera</td>
</tr>
<tr>
<td>23. Modelo subnasal "asiático"***</td>
<td>23. Modelo subnasal "asiático"***</td>
</tr>
<tr>
<td>24. Paladar largo, estrecho y con líneas dentales anteriormente convergentes</td>
<td>24. Paladar más corto, ancho y con líneas dentales paralelas</td>
</tr>
<tr>
<td>25. Ausencia de hueso ectotimpánico</td>
<td>25. Hueso ectotimpánico tubular</td>
</tr>
<tr>
<td>26. Margen inferior del meato auditivo externo situado al mismo nivel que el margen superior de la fosa genoidal</td>
<td>26. Igual</td>
</tr>
<tr>
<td>27. Proceso coronóideo de la mandíbula más alto que el proceso condilar</td>
<td>27. Procesos coronoides y condilar de la mandíbula subiguales</td>
</tr>
<tr>
<td>29. Torus transverso sínfisis superior más grande que el inferior</td>
<td>29. Ambos torus transversos sínfisis subiguales</td>
</tr>
<tr>
<td>30. Esmalte dental delgado</td>
<td>30. Esmalte dental espeso</td>
</tr>
<tr>
<td>31. Caninos superiores cortantes con surco mesial que se extiende hasta la unión corona/raíz</td>
<td>31. Caninos superiores robustos con surco mesial que se extiende hasta la unión corona/raíz</td>
</tr>
<tr>
<td>32. I' e I" subiguales</td>
<td>32. I' > I"</td>
</tr>
<tr>
<td>33. I' en la misma posición que I"</td>
<td>33. I' posicionado anteriormente a I"</td>
</tr>
<tr>
<td>34. Incisivos superiores no protuberantes</td>
<td>34. Incisivos superiores protuberantes</td>
</tr>
<tr>
<td>35. P' y P" con cuspídes heteromórficas</td>
<td>35. P' y P" con cuspídes más homomórficas</td>
</tr>
<tr>
<td>36. P4 sectorial</td>
<td>36. P4 con reducción de la sectorialidad</td>
</tr>
<tr>
<td>37. Cíngulo molar fuerte</td>
<td>37. Cíngulo molar ausente</td>
</tr>
</tbody>
</table>
de su misma edad, mientras que se separa de la de los chimpancés y gorilas infantiles (Andrews et al., 1981). Si tenemos en cuenta que la morfología que presenta Aegyptopithecus adulto para la zona supraorbitaria es muy similar a la de Pongo adulto, podemos inferir que los individuos infantiles del primer taxón tendrían una morfología parecida a la que exhiben los infantiles de Pongo. Esto nos lleva a la conclusión que, para esta característica, Proconsul es neotónico, con lo que los individuos adultos de éste retendrían la morfología infantil.

3) Morfotipo ancestral homínido

Hemos observado que los primitivos hominoideos presentaban una morfología similar a la de los primitivos catarrinos, con pocas variaciones anatómicas. En el siguiente grupo taxonómico se produce una fuerte remodelación del tercio facial inferior, lo que marca una sustancial separación con las formas más primitivas y anuncia ya la morfología de los homínidos modernos. Estos homínidos primitivos los englobamos en la subfamilia Kenyapithecinae, con dos tribus: Afropithecini (Miocene inferior, taxones Afropithecus –incluye los restos atribuidos a Morotopithecus– y Equatorius –incluye los restos atribuidos previamente a Kenyapithecus africanae–) y Kenyapithecini (Miocene medio, taxones Kenyapithecus –incluye los restos atribuidos a K. wickeri–, Heliopithecus y Griphopithecus). Las características derivadas comunes a todo el grupo son: (15) zigomático plano, robusto y anteriormente orientado; (18) caninos superiores rotados en los alveolos; (19) profunda fosa canina; (21) margen inferior de la abertura nasal posicionado alto; (23) modelo subnasal variable: en Afropithecus (KNM-WT 16999) se observa un canal incisivo constreñido (= Pongo) con un marcado desnivel entre el clivus nasoalveolar y el paladar duro (= homínidos africanos), mientras que en Equatorius (maxilar de Barogoi) el canal incisivo es más ancho, aunque el clivus no se solapa sobre el paladar duro (= algunos ejemplares de Gorilla, modelo “dryomorfo”). El modelo subnasal “dryomorfo” se caracteriza por presentar un verdadero canal incisivo, con presencia de fosa y foramen incisivos, a pesar de no solaparse completamente el clivus con el paladar duro. En el modelo primitivo o “hilomorfo” existe comunicación directa entre el piso nasal y el paladar duro; (31) torus sinfisarios transversos inferior y superior subiguales; (32) caninos robustos; (33) mayor discrepancia en el tamaño entre I1 e I2; (34) I1 protuberantes, y (37) reducción del cíngulo molar.

Como podemos observar, estas diez nuevas apomorfías, sumadas a las diez del morfotipo ancestral homínideo, configuran una morfología que ya nos acerca mucho a la del orangután (Tabla 1). Además, algunos taxones de esta subfamilia exhiben una serie de rasgos, no listados en la Tabla 1, derivados exclusivamente con el clado pongino, estos son: plano sinfisal con declive somero y fuerte extensión posterior (observable en Kenyapithecus, Griphopithecus y Pongo); modelo del relieve lingual de I1 (observable en Equatorius, Kenyapithecus, Griphopithecus y Sivapithecus—Ponginae—), y pronunciado desarrollo de la proeminentia lateralis lo que le da al cuerpo mandibular adyacente a la rama ascendente un acusado espesor (observable en Equatorius, Griphopithecus y Sivapithecus). Así mismo, todos los miembros del grupo kenyapitecino ya ostentan definitivamente un fuerte espesor del esmalte dental, característica solo exhibida actualmente por Pongo y Homo.

4) Morfotipo pongino

Sivapithecus y Pongo comparten un número de características morfoanatómicas faciales derivadas lo suficientemente grande como para establecer entre ellos

Tabla 1. Se refiere al grado de rotación que presenta el paladar duro respecto al neurocráneo: aiorrinquía es cuando el paladar está rotado dorsalmente (en contraposición a clinorrinquía: rotación ventral del paladar duro). **La costa supraorbital es el reborde óseo en forma de ‘costilla’ situado en el margen supralateral del órbita; está formada por la coalescencia de la porción anterior de la línea temporal con el arco superciliar.*** **El modelo subnasal “hilomorfo” se caracteriza por presentar un clivus nasoalveolar horizontal y comprimido, con fuerte separación entre dicho clivus y el paladar duro, dando como consecuencia la ausencia de canal incisivo, existiendo una amplia comunicación entre la cavidad nasal y la oral, llamada *palatine fenestrae*, el margen posterior de ésta se encuentra situado entre los incisivos superiores, y el paladar duro es delgado. ***El modelo subnasal asiático se caracteriza por presentar un clivus nasoalveolar alargado, horizontalmente orientado y marcadamente curvado, el canal incisivo está muy constreñido (a veces ausente), y el piso nasal y el paladar duro no se solapan sino que se continúan.***

Flexion present in the hard palate with respect to the neurocranium: aiorrhynchy is present when the hard palate presents upward flexion (in contrast to clinorrhynch: downward flexion of the hard palate). **The supraorbital costa is a rib-like bony flange positioned at the supralateral margin of the orbit, formed by the coalescence of the anterior portion of the temporal line with the superciliare arch.*** **In the ‘hilomorph’ subnasal pattern the nasoalveolar clivus appears as a compressed oval and horizontal, the anterior abbreviation of the clivus causes it to be separated from the anterior edge of the hard palate, consequently do not possess a true incisive canal, but instead present a broad communication between the nasal and oral cavities, the posterior edge of the palatine fenestrae is placed between the upper incisors, and the hard palate is thin.*** **In the ‘asiatic’ subnasal pattern the nasoalveolar clivus arches posteriorly into the nasal cavity without an abrupt change of relief at the incisive fossa; the incisive canal is a very narrow tubular chanel.***
Figura 2. Cladograma propuesto para los hominoideas. **Incluye los taxones Afropithecus, Equatorium, Heliopithecus, Kenyapithecus y Grifhiphopithecus.** ***Incluye los taxones fósiles Sivapithecus y Ankarapithecus y el actual Pongo.***

***Incluye los taxones actuales Gorilla, Pan y Homo.

Cladogram for the hominoids. **Taxa Afropithecus, Equatorium, Heliopithecus, Kenyapithecus and Grifhiphopithecus are included here.** **Fossil taxa Sivapithecus and Ankarapithecus and the extant Pongo are included here.***

***Exant taxa Gorilla, Pan and Homo are included here.

DISCUSIÓN

Fósiles asignados al clado Ponginae

Recientemente, algunos autores han cuestionado que Sivapithecus sea miembro del clado Ponginae y ven en este taxón miocénico una forma primitiva respecto a todos los homínidos (Greenfield, 1980; Brown y Ward, 1988; Pilbeam et al., 1990; Pilbeam, 1996) y en comunicación oral en “Sobre la evolución de los
Los homínidos", Barcelona, octubre de 1996; Ward, 1997). Sus argumentos se basan en: 1) la anatomía facial (Sivapithecus exhibe un segmento facial medio muy largo y el sinus maxilar está más restringido y es menos invasivo); 2) la morfología de la mandíbula (ausencia en Pongo de impresiones del músculo digástrico anterior y cuerpo mandibular estrecho en comparación con la altura); 3) la morfología de los molares permanentes (en Pongo las coronas son aplanadas, los ápices de las cuspides en posición periférica y un amplio repertorio de crenulación del esmalte oclusal), y 4) la evidencia poscranial (no existen evidencias de que Sivapithecus tuviera hábitos posturales significativamente ortógrados).

1) La presencia de un segmento facial medio muy largo en Sivapithecus no es una autapomorfía, sino que en realidad se trata de una característica primitiva que ya se encuentra en Morotopithecus y en Afropithecus (Ward, 1997); lo mismo ocurre con el tamaño y disposición del sinus maxilar; 2) la ausencia de las impresiones del músculo digástrico anterior en la base de la síntesis mandibular es una pérdida reciente que se da en Pongo, pues todas las formas primitivas, incluido Sivapithecus, las exhiben; también las proporciones mandibulares de Pongo se pueden atribuir a una autapomorfía; 3) la morfología de los molares de Sivapithecus es muy parecida a la presente en los kenaypithecinos y responde al grado del espesor del esmalte dental en relación con el tamaño de las piezas. Por tanto, estas diferencias craneoentales entre Sivapithecus y Pongo en realidad serían una retención por parte del primero de la morfología primitiva, mientras que en Pongo se encuentran ulteriormente derivadas, y 4) la evidencia de los restos poscraneales es mucho más dura. Pilbeam et al. (1990), describen dos húmeros pertenecientes a Sivapithecus, el más grande -GSP 30754 [9.3 ma (Pilbeam et al., 1990)]- pertenece a S. parvada y el más pequeño -GSP 30730 [10.8 ma (Pilbeam et al., 1990; Kappelman et al., 1991)]- a S. indicus. Concluyen que por la morfología de la diafisis proximal, similar a la de Proconsul, Kenyaypithecus y cercopitecos (medialmente inclinada, retroflexionada y plano deltoidec llano), Sivapithecus era cuadrúpedo. Si esto es así, es muy difícil situar a Sivapithecus en el linaje pongino, pues las características relacionadas con los movimientos suspensorios y los hábitos posturales ortógrados, presentes en orangután, gorila y chimpancé, se tendrían que haber originado independientemente en el orangután por un lado y en los homínidos africanos por otro. Sin embargo, en un reciente estudio, Moyà-Solà y Köhler (1996) reconstruyen los dos húmeros de Sivapithecus y concluyen que S. parvada -GSP 30754- denota rasgos ciertamente cuadrúpedos, pero que S. indicus -GSP 30730-, exhibe una morfología adaptada a hábitos principalmente trepadores y suspensorios; lo que estaría en concordancia con la morfología de la epífisis distal de GSP 30730, derivada con los homínidos actuales (tróclea con forma de carrete y mediolateralmente ancha, y cóndilo redondeado y separado del labio troclear lateral.
por un surco estrecho y profundo –Pilbeam et al., 1990; Rose, 1994–. De ser así, S. indicus ya exhibiría un modelo de locomoción derivado con los homínidos actuales a los 10,8 ma y una morfología facial derivada con Pongo al menos a los 8 ma (GSP 15000). Sin embargo, la presencia de dos modelos locomotores en un mismo género no está aceptada por muchos autores (p. ej., Ward, 1997), por lo que S. parvada podría pertenecer a otro género, aunque lo más probable es que este taxón hubiera perdido los hábitos respiratorios posteriormente, pues su epífisis distal (GSP 12271), aunque de mayor tamaño que la de S. indicus, tiene una morfología derivada idéntica a la de GSP 30730.

S. rivapithecus es un miembro del clado Ponginae, la presencia en este taxón de las nueve características derivadas con Pongo, anteriormente citadas, respecto del morfotipo ancestral homínido, hacen prácticamente inviable la presencia de otro taxón fósil actualmente conocido en la base del clado Ponginae (queda la duda de Ankarapithecus). Si a estas características le añadimos la presencia en los kenyapithecinos y Sivapithecus de un segmento facial medio muy alargado, se reforzaría todavía más dicha hipótesis, pues este rasgo no se encuentra en ningún otro taxón, fósil o actual.

Sin embargo, en varios artículos Moyá-Solá y Köhler han propuesto a Dryopithecus (Mioceno medio/superior y superior de Europa) como miembro basal del linaje pongino (Moyá-Solá y Köhler, 1993, 1995, en Agusti et al., 1996, y en Pickford et al., 1997). Esta conclusión se basa en: a) sutura frontozigomática baja; b) zigomático plano, robusto y anteriormente orientado; c) forámenes zigomático faciales situados encima del margen inferior orbitario; d) fosa glesnoides situada debajo del margen inferior del meato auditivo externo, y e) presencia de corona supraorbital con crestas temporales yuxtapuestas. Todas estas características han sido descritas y contestadas en diferentes trabajos (Begun, 1994, 1995; Begun y Kordos, 1997; Begun et al., 1997; Begun y Güleç, 1998; Ribot y Gibert, 1995; Ribot, 1996; Ribot et al. –enviado–), de todas formas creemos importante exponer, aunque brevemente, dicha contestación.

a) La altura relativa de la sutura frontozigomática en Dryopithecus, tanto si la relacionamos con la anchura biorbitaria (índice 1 = 15,3) como con la altura de la órbita (índice 2 = 37,9), entra dentro de la variabilidad de los tres grandes antropoides actuales –índices tomados de Benefit y McCrossin, 1993– (para el índice 1: Pongo=12,8-20,0; Gorilla=8,7-15,8 y Pan=10,8-17,2; para el índice 2: Pongo=25,0-38,7; Gorilla=21,2-41,9 y Pan=27,6-41,9), lo que nos indica que Dryopithecus, para esta morfología, no se encuentra derivado exclusivamente con Pongo.

b) El zigomático plano, robusto y anteriormente orientado ya se encuentra en los kenyapithecinos [en Afropithecus (Leakey et al., 1988; McCrossin y Benefit, 1994; Benefit y McCrossin, 1995; Schwartz, 1997)] y en Kenyapithecus (Walker y Andrews, 1973; Pickford, 1985, 1986)], por lo que éste es un rasgo primitivo. En Dryopithecus el zigomático presenta cuatro características que lo distinguen del de Pongo: 1) depresión en el tercio antero-inferior de 10 x 12 mm, que respondería al margen lateral de la fosa canina; 2) el borde externo se encuentra ligeramente curvado y lateralizado; 3) el margen inferior está situado posteriormente respecto al plano inferior orbitario, y 4) la cresta zigomáticoalveolar es espesa y está neumatizada.

c) El número y situación de los forámenes zigomático faciales en Dryopithecus es una clara retención primitiva, ya se observa en Victoriapithecus, Proconsul y Miopithecus, también excepcionalmente en algunos ejemplares de Pan e Hylobates, y en la mayoría de individuos infantiles y juveniles de los actuales catarrinos.

d) La disposición del meato auditivo externo/fosa glenoida que exhiben Pongo y Dryopithecus es la primitiva. Desgraciadamente esta estructura no se conserva en prácticamente ningún hominido fósil, pero se puede observar la misma disposición en Aegyptopithecus y Proconsul, así mismo en Hylobates klossi y H. syndactylyus, y en muchos especímenes de Gorilla y Pan; por otro lado, el hecho de que muy pocos especímenes de Pongo muestren la morfología presente en los actuales homínidos africanos, nos hace pensar que el orangután sea conservador en este aspecto.

e) La presencia de corona supraorbital con crestas temporales yuxtapuestas que forman el trigono frontal es una morfología muy primitiva que ya la encontramos en Aegyptopithecus, Afropithecus y Victoriapithecus. La morfología derivada es la observada en Gorilla y Pan con presencia de torus supraorbitales. Sin embargo, Dryopithecus muestra una variedad respecto a las formas primitivas: la región glaberal se encuentra ligeramente abultada y se expande lateralmente formando un incipiente torus supraorbital, y el trigono frontal es cóncavo, formando por encima de la zona glaberal un somero sulcus supraorbitalis. Este complejo supraorbital separa Dryopithecus tanto de las formas primitivas como del clado pongino, y lo acerca más al clado de los homínidos africanos.

Después de revisar someramente estas cinco características, vemos que ninguna de ellas relaciona Dryopithecus exclusivamente con Pongo, por tanto, no creemos que exista ninguna evidencia objetiva para situar a Dryopithecus en el clado Ponginae. Otras dos alternativas para este taxón serían: 1) que es primitivo para los homínidos (Martin, 1986; Begun, 1987, 1992; Andrews y Martin, 1987; Andrews, 1992; Andrews et al., 1996; Harrison y Rock, 1997), o 2) que es un miembro basal del linaje homínino (Kordos, 1987, 1988; Dean y Delson, 1992; Begun, 1994, 1995; Ribot y Gibert, 1995; Ribot, 1996; Begun y Kordos, 1997; Begun et al., 1997; Delson, 1997; Begun y Güleç, 1998; Ribot et al., enviado). No es objeto de este artículo establecer las relaciones filogenéticas de Dryopithecus, simplemente queríamos exponer resumidamente las relaciones que pudiera tener este homínido con el clado del orangután.

Radiación homínida y evolución del clado Ponginae

Durante el Mioceno se producen diferentes intercambios faunísticos entre África y Eurasia.
coincidiendo con momentos en que el nivel del mar baja. El primero se produjo a los 21 ma, y en él parece que no se vieron envueltos los primates. En el segundo, a 16,5 ma, dos taxones de primates procedentes de África entran en Eurasia, Dionysopithecus, que podría estar relacionado con Micropithecus y con Hylobates, en el subcontinente indio, y Platodoniothecus, que parece que forma parte de la radiación de Proconsul, en China. Si Dionysopithecus está realmente relacionado con Hylobates, como sugieren algunos autores (Fleagle, 1984; Barry et al., 1986), la separación de este último taxón del resto de hominóideos se habría producido en un intervalo de tiempo (mínimo 16,5 ma) que encaja en el amplio rango ofrecido por los datos moleculares (Sibley y Ahlquist, 1984: 22-18 ma; Cronin et al., 1984: 15-12 ma). A 15,5 ma dos evidencias parecen indicar la salida de los afropitecos de África, Heliopithecus en Ad Dabiyah (Península Arábiga) y un molar con una fuerte capa de esmalte en Engelswies (Alemania), aunque de momento es difícil relacionar Afropithecus, Heliopithecus y el hominóideo de Engelswies. Hace unos 14 ma se produjo una nueva migración faunística desde África del este hacia Eurasia, así lo evidencia la fauna de mamíferos de Pašalar (Van der Made, 1997, 1999a). En este momento los kenyapitecos –de origen africano– se encuentran representados en Anatolia por Griphopithecus. A 12,5 ma Griphopithecus penetra desde Anatolia en Asia y Europa. Desde esta zona varios taxones de mamíferos entraron en la zona indo-paquistaní, confirmado por las faunas antiguas de Chinji (Siwalik) (Pilbeam et al., 1979; Raza et al., 1983; Kappelman et al., 1991), donde Sivapithecus, probable descendiente de Griphopithecus, aparece por primera vez (12,5 ma). Sin embargo, las faunas más recientes de los Siwalik denotan ya un carácter primordialmente euroasiático (Pilbeam et al., 1979), con lo que se produciría el aislamiento del taxón Sivapithecus. La primera presencia de Dryopithecus en Europa está datada en poco más de 11 ma –La Grive oc, St. Gaudens, St. Stephan–, como parte del intercambio faunístico producido a los 12,5 ma (Van der Made y Ribot, 1999); aunque con cierto grado de incertidumbre, el origen de este taxón también se podría buscar en Griphopithecus (Ribot, 1996). De ser así, la separación entre ambos grupos (Dryopithecus y Sivapithecus) a partir de Griphopithecus, seguramente se debió a fuertes cambios climáticos que originaron ambientes áridos (Van der Made, comunicación personal), lo que propició que evolucionaran separadamente durante todo el Mioceno superior. Mientras que Sivapithecus evolucionaría hacia Ankarapithecus (?) y Pongo, Dryopithecus lo haría hacia Graecopithecus y Oreopithecus. Más adelante, los graecopitecos originarían a los homínidos africanos. Recientemente, Kalb et al.(1996) citan que durante el Vallesianse algunos proboscídeos volvieron a migrar a África; asimismo Van der Made (1999b) explica la reentrada a África de suidos desde Turquía y Oriente Medio en el Vallesiense. Autores como Soulinas et al. y de Bonis y Koufos (citados en Augst et al., 1998) han demostrado que durante el Turolíense buena parte de la fauna de Grecia muestra una fuerte tendencia a vivir en condiciones áridas; la elevada aridificación que se da en África en este momento propició que grandes mamíferos emigraran hacia este continente desde la bioprovincia Pikermiense. Esta hipótesis también explicaría la reentrada en África de homínidos europeos, representados por Graecopithecus, y forzaría la validez del clado Dryopithecus-Graecopithecus-Gorilla-Pan (Fig. 2). Así, la entrada en Eurasia desde Anatolia de Griphopithecus, y su bifurcación simétrica en dromorfos en Europa y sivanmoros en Asia a 12,5 ma, coincidiría plenamente con la cronología molecular propuesta para la separación del orangután del resto de homínidos.

AGRADECIMIENTOS

Deseamos expresar nuestro agradecimiento al Dr. J. Van der Made por su revisión y sus valiosos comentarios. A los Dres. D. Campillo, F. Sánchez y E. García-Olivares por sus comentarios. Y a un revisor anónimo por sus indicaciones.

BIBLIOGRAFÍA

Manuscrito recibido: 20 de octubre, 2000
Manuscrito aceptado: 26 de abril, 2001